
 

 

  
Abstract—Multiplication is an important arithmetic operation 

that is frequently encountered in microprocessing and digital signal 
processing applications, and multiplication is physically realized 
using a multiplier. This paper discusses the physical implementation 
of many indicating asynchronous array multipliers, which are 
inherently elastic and modular and are robust to timing, process and 
parametric variations. We consider the physical realization of many 
indicating asynchronous array multipliers using a 32/28nm CMOS 
technology. The weak-indication array multipliers comprise strong-
indication or weak-indication full adders, and strong-indication 2-
input AND functions to realize the partial products. The multipliers 
were synthesized in a semi-custom ASIC design style using standard 
library cells including a custom-designed 2-input C-element. 4×4 and 
8×8 multiplication operations were considered for the physical 
implementations. The 4-phase return-to-zero (RTZ) and the 4-phase 
return-to-one (RTO) handshake protocols were utilized for data 
communication, and the delay-insensitive dual-rail code was used for 
data encoding. Among several weak-indication array multipliers, a 
weak-indication array multiplier utilizing a biased weak-indication 
full adder and the strong-indication 2-input AND function is found to 
have reduced cycle time and power-cycle time product with respect 
to RTZ and RTO handshaking for 4×4 and 8×8 multiplications. 
Further, the 4-phase RTO handshaking is found to be preferable to 
the 4-phase RTZ handshaking for achieving enhanced optimizations 
of the design metrics.  
 

Keywords—Arithmetic circuits, Asynchronous circuits, Digital 
circuits, Indication, Multiplier, CMOS, Standard cells.  

I. INTRODUCTION 
ULTIPLICATION is an important arithmetic operation that 
is frequently encountered in microprocessing and digital 

signal processing [1], [2]. References [3–9] discuss various 
transistor-level and gate-level designs of the asynchronous 
multipliers. However, a majority of these multipliers 
correspond to the bundled-data handshake protocol, which has 
separate request and acknowledge wires besides the data 
bundle (i.e., data bus) and features a constant delay element 
that governs data communication between the sender and the 
receiver. Due to the fixed delay presumed for the data transfer 
between the sender and the receiver, bundled-data 
asynchronous multipliers are not robust when the presumed 
delay gets exceeded, and they are neither indicating nor robust.  
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In this work, we consider the robust class of indicating 
asynchronous multipliers whose product bits acknowledge the 
arrival of all the primary inputs and the completion of internal 
computation. Indicating asynchronous circuits are quasi-delay-
insensitive circuits, which are the practically realizable delay-
insensitive circuits which include the weakest compromise of 
isochronic fork(s) [10]. All the wires branching out from an 
isochronic node or junction are assumed to experience signal 
transitions i.e., rising or falling concurrently. In this work, we 
consider the array multiplier architecture for an example, 
which corresponds to the well-known shift-and-add 
multiplication approach. We realize indicating asynchronous 
realizations of 4×4 and 8×8 array multipliers, which utilize 
asynchronous components pertaining to strong-indication and 
weak-indication asynchronous logic design methods.  

The rest of the article is organized into 4 sections. Section 2 
gives background information about the design of indicating 
asynchronous circuits. Section 3 discusses various indicating 
asynchronous implementations of the 4×4 and 8×8 array 
multipliers by following the semi-custom ASIC design style. 
Section 4 presents the design metrics estimated for the array 
multipliers based on physical realization using a 32/28nm 
CMOS process. The (normalized) power-cycle time product of 
the multipliers is also provided. Finally, some conclusions and 
a scope for further work are mentioned in Section 5.    

II. INDICATING ASYNCHRONOUS CIRCUITS – A BACKGROUND 

A. Data Encoding and Handshaking 
The schematic of an indicating asynchronous circuit stage is 

shown in Fig. 1, which is correlated with the sender-receiver 
analogy. In Fig. 1, the current stage and the next stage registers 
are analogous to the sender and the receiver, and the indicating 
asynchronous circuit is sandwiched between the current stage 
and the next stage register banks. The register bank comprises 
a series of registers, with one register allotted for each of the 
rails of an encoded data input. Here, the register is basically a 
2-input C-element. The C-element will output 1 or 0 if all its 
inputs are 1 or 0 respectively. If the inputs to a C-element are 
not identical then the C-element would retain its existing 
steady-state. The circles with the marking ‘C’ denote the C-
elements in the figures.  

In Fig. 1, (Q1, Q0), (R1, R0) and (S1, S0) represent the 
delay-insensitive dual-rail encoded inputs of the single-rail 
inputs Q, R and S respectively. According to dual-rail data 
encoding [11] and 4-phase RTZ handshaking [12], an input Q 
is encoded as (Q1, Q0) where Q = 1 is represented by Q1 = 1 
and Q0 = 0, and Q = 0 is represented by Q0 = 1 and Q1 = 0. 
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Both these assignments are called data. The assignment Q1 = 
Q0 = 0 is called the spacer, and the assignment Q1 = Q0 = 1 is 
deemed to be illegal since the coding scheme should be 
unordered [13] to maintain the delay-insensitivity.  
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Fig. 1 A indicating asynchronous circuit stage. Example RTZ and 
RTO completion detectors are portrayed within the dotted green 

boxes in green. 
 

The application of input data to a indicating asynchronous 
circuit obeying the 4-phase RTZ handshaking follows this 
sequence [12]: data-spacer-data-spacer, and so forth. The 
application of input data is followed by the application of the 
spacer, which implies that there is an interim RTZ phase 
between the successive applications of input data. The RTZ 
phase ensures an unambiguous data communication between 
the sender and the receiver. The RTZ handshaking is governed 
by the following four steps.  

• Step 1: The dual-rail data bus specified by (Q1, Q0), 
(R1, R0) and (S1, S0) assumes the spacer, and 
therefore the acknowledgment input (Ackin) is binary 
1. After the sender transmits a data, this would cause 
rising signal transitions i.e., binary 0 to 1 to occur on 
one of the dual rails of the dual-rail data bus  

• Step 2: The receiver would receive the data sent and 
drive the acknowledgment output (Ackout) to 1   

• Step 3: The sender waits for Ackin to become 0 and 
would reset the dual-rail data bus, i.e., the dual-rail 
data bus becomes the spacer again 

• Step 4: After an unbounded but a finite and positive 
time duration, the receiver drives Ackout to 0 and 
subsequently Ackin would assume 1. With this, a 

single data transaction is said to be completed, and the 
asynchronous circuit is permitted to start the next data 
transaction 

 
According to dual-rail data encoding and 4-phase RTO 

handshaking [14], an input Q is encoded as (Q1, Q0) and Q = 
1 is represented by Q1 = 0 and Q0 = 1, and Q = 0 is 
represented by Q0 = 0 and Q1 = 1. Both these assignments are 
called data. The assignment Q1 = Q0 = 1 is called the spacer, 
and the assignment Q1 = Q0 = 0 is deemed to be illegal to 
maintain the delay-insensitivity.  

The application of input data to a indicating asynchronous 
circuit obeying the 4-phase RTO handshaking follows this 
sequence: spacer-data-spacer-data, and so forth. There is an 
interim RTO phase between the successive applications of 
input data and the RTO phase ensures an unambiguous data 
communication between the sender and the receiver. The RTO 
handshaking process is governed by the following four steps.  

 
• Step 1: Ackin is equal to binary 1. After the sender 

transmits the spacer, this would cause rising signal 
transitions i.e., binary 0 to 1 on all the rails of the dual-
rail data bus  

• Step 2: The receiver would receive the spacer sent and 
drive Ackout to 1   

• Step 3: The sender waits for Ackin to become 0 and 
would transmit the data through the dual-rail data bus 

• Step 4: After an unbounded but a finite and positive 
time duration, the receiver drives Ackout to 0 and 
subsequently Ackin would assume 1. With this, a 
single data transaction is said to be completed, and the 
asynchronous circuit is permitted to start the next data 
transaction 

 
In a indicating asynchronous circuit, the time taken to 

process the data in the datapath, highlighted by the dotted blue 
in Fig. 1, is called forward latency and the time taken to 
process the spacer is called reverse latency. Since there is an 
intermediate RTZ or RTO phase between the application of 
two input data sequences, the cycle time is expressed by the 
sum of forward and reverse latencies. The cycle time of a 
indicating asynchronous circuit is synonymous with the clock 
period of a synchronous circuit.  

The gate-level detail of the example completion detectors 
corresponding to 4-phase RTZ and RTO handshake protocols 
are shown at the bottom of Fig. 1, within the dotted green 
boxes. A completion detector acknowledges the receipt of all 
the primary inputs given to an indicating asynchronous circuit 
stage. In the case of 4-phase RTZ handshaking, Ackout is 
provided by employing a 2-input OR gate to combine the 
respective dual rails of each encoded input, and then 
synchronizing the outputs of such 2-input OR gates using a C-
element or a tree of C-elements. In the case of 4-phase RTO 
handshaking, Ackout is provided by employing a 2-input AND 
gate to combine the respective dual rails of each encoded 
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input, and then synchronizing the outputs of such 2-input AND 
gates using a C-element or a tree of C-elements. It may be 
noted that Ackin is the Boolean complement of Ackout and 
vice-versa.  

B. Indicating Asynchronous Circuits 
Indicating asynchronous circuits are classified into strong-

indication and weak-indication circuits [15]. The input-output 
timing correlation of these circuit types is illustrated by a 
representative timing diagram shown in Fig. 2. The arrival of 
data or spacer is highlighted within the dotted blue circles and 
the complete receipt of data or spacer is highlighted within the 
dotted green ovals in Fig. 2.  
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Fig. 2 Input-output timing correlation of strong-indication and weak-
indication circuit types corresponding to: (a) RTZ handshaking and 

(b) RTO handshaking. 
Strong-indication circuits [16] would wait to receive all the 

primary inputs (i.e., data or spacer) and would then process 
them to produce the required primary outputs (data or spacer). 

On the other hand, weak-indication circuits [17] can produce 
all but one of the primary outputs after receiving a subset of 
the primary inputs. Nevertheless, only after receiving the last 
primary input, they would produce the last primary output.    

Both strong- and weak-indication asynchronous circuit types 
incorporate the isochronic fork assumption [10]. It is reported 
in [18] that the isochronic fork assumption is also realizable in 
the nanoelectronics regime.  

A cascade of strong-indication sub-circuits may not result in 
a strong-indication circuit. Rather, a weak-indication circuit 
may result. For example, if two strong-indication full adders 
are cascaded, the resultant would be a weak-indication 2-bit 
ripple carry adder (RCA). This is because if all the inputs to 
one of the full adders are provided, the corresponding sum and 
carry output bits of that full adder could be produced 
regardless of the provision of inputs for the other full adder in 
the RCA. However, only after the inputs to the other full adder 
are supplied, its corresponding sum and carry output bits 
would be produced. This is characteristic of weak-indication.  

Among the strong- and weak-indication circuits, the latter 
are preferable for physical implementation [19]. This is 
because of the strict timing restrictions inherent in the former. 
Generally, for implementing arithmetic functions, the weak-
indication type is preferable to the strong-indication type [20–
22] and this is because strong-indication arithmetic circuits 
tend to experience worst-case forward and reverse latencies for 
the application of data and spacer, and therefore the cycle time 
of strong-indication arithmetic circuits is always the maximum.  

On the other hand, weak-indication arithmetic circuits may 
encounter data-dependent forward and reverse latencies or a 
data-dependent forward latency and a constant reverse latency. 
Thus, the cycle time of weak-indication arithmetic circuits is 
usually less compared to that of strong-indication arithmetic 
circuits. However, for the weak-indication array multipliers 
considered here it is observed that their forward and reverse 
latencies are neither data-dependent nor a constant; rather they 
correspond to the worst-case timing and so the cycle time also 
corresponds to the worst-case. Nevertheless, it is noted that the 
weak-indication array multipliers incorporating weak-
indication full adders facilitate reductions in cycle time, silicon 
area, and average (total) power dissipation compared to the 
weak-indication array multipliers incorporating strong-
indication full adders. This will be evident from the simulation 
results presented in Section 4.    

III. INDICATING ASYNCHRONOUS ARRAY MULTIPLIERS 
Many weakly indicating 4×4 and 8×8 array multipliers were 

physically implemented corresponding to RTZ and RTO 
handshaking. References [23], [24], [41] provide practical 
examples for the transformation of an asynchronous circuit 
corresponding to the RTZ protocol into that that corresponds 
to the RTO protocol and vice-versa. The rules for the logical 
transformation between RTZ and RTO handshaking are given 
in [25] along with the proofs, and an interested reader may 
refer to the same for details. However, the example RTZ and 
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RTO completion detectors shown in Fig. 1 serve as a small 
illustration for the logic transformation between RTZ and RTO 
handshaking. Another example of such a logic transformation 
is portrayed by Fig. 3, which shows the 2-input AND function 
realized according to RTZ and RTO handshaking.  
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Fig. 3 Strongly indicating realization of 2-input AND function 

corresponding to: (a) RTZ handshaking and (b) RTO handshaking. 
C1 to C4 represent the 2-input C-elements in (a) and (b). (A1, A0) 

and (B1, B0) are the inputs and (Z1, Z0) is the output.   
 
Note that robust asynchronous realizations of the 2-input 

AND function are required to generate the partial products. 
For this purpose, a strongly indicating realization of the 2-
input AND function is considered as shown in Fig. 3. It may 
be noted in this context that a weak-indication 2-input AND 
function cannot be realized since it has only one dual-rail 
primary output. A weak-indication circuit requires at least a 
pair of dual-rail primary outputs to satisfy the weak-indication 
timing constraints. 

The primary intent here is to determine which indicating 
asynchronous logic components would be more optimum for 
realizing the array multiplier architecture. This observation 
may be useful to determine which indicating asynchronous 
logic components would be more suitable for the optimum 
realization of indicating asynchronous multipliers based on the 
other multiplier architectures. Further, it is of interest to 
ascertain whether the RTZ or the RTO handshaking could help 
to better optimize the design metrics.  

The indicating full adders derived based on different 
asynchronous logic design methods [26–31] are used to realize 
the asynchronous array multipliers, as mentioned below, by 
substituting the full adders in the array multiplier architectures 
shown in Figs. 4a and 4b. Strongly indicating realizations of 
the 2-input AND function, as shown in Fig. 3, were used to 
generate the partial products to perform shifted-addition.       

•      Weak-indication array multipliers which incorporate 
strong-indication full adders realized based on [26] 
corresponding to RTZ and RTO handshaking 

•      Weak-indication array multipliers which incorporate 
strong-indication full adders realized based on [27] 
corresponding to RTZ and RTO handshaking 

•      Weak-indication array multipliers which incorporate 
strong-indication full adders realized based on [28] 
corresponding to RTZ and RTO handshaking 

•      Weak-indication array multipliers which incorporate 
weak-indication full adders realized based on [27] 
corresponding to RTZ and RTO handshaking 

•      Weak-indication array multipliers which incorporate 
weak-indication full adders realized based on [29] 
corresponding to RTZ and RTO handshaking 

•      Weak-indication array multipliers which incorporate 
weak-indication full adders realized based on [30] 
corresponding to RTZ and RTO handshaking 

•      Weak-indication array multipliers which incorporate 
weak-indication full adders realized based on [31] 
corresponding to RTZ and RTO handshaking  

IV. SIMULATION RESULTS 
Twenty-eight indicating asynchronous array multipliers 

corresponding to 4×4 and 8×8 multiplications were physically 
realized using the gates of a 32/28nm CMOS standard digital 
cell library [32]. In our previous work [42], only the 4×4 
multiplication was considered. The 2-input C-element does not 
form a part of the cell library and so it was custom-realized 
based on the AO222 cell by introducing feedback, which 
required 12 transistors. All the asynchronous array multipliers 
correspond to weak-indication. An N×N array multiplier gives 
rise to N2 partial products, which are realized using 2-input 
AND functions, and then shifted and added using N(N–1) full 
adders with the carry input of N full adders reset (i.e., set to 0 
and 1 in the case of RTZ and RTO handshaking respectively).       

Quasi-delay-insensitivity was carefully considered while 
decomposing the asynchronous logic [28] [33] to avoid the 
possibility of creation of gate orphan(s). Gate orphans are 
unacknowledged signal transitions on the intermediate gate 
outputs, which are problematic as they might affect the 
robustness of an indicating asynchronous circuit and so they 
should be avoided [34]. For an explanation of gate orphans, 
we refer the readers to some prior works [35–37]. Wire orphan 
refers to the unacknowledged signal transition on a wire and is 
avoided by imposing the isochronic fork assumption [38].  

A typical case PVT specification of the high Vt digital cell 
library [32] with a supply voltage of 1.05V and an operating 
junction temperature of 25°C was considered to perform the 
simulations. The design metrics such as cycle time, area, and 
average power dissipation estimated are given in Table I.   

The cycle time of an indicating asynchronous circuit is the 
sum of forward and reverse latencies. The forward latency is 
like the critical path delay which can be directly estimated. 
The estimation of reverse latency is non-trivial since it 
represents the time taken to process the spacer and the reverse 
latency cannot be directly estimated using a commercial static 
timing analyzer. The reverse latency can however be estimated 
based on the timing information obtained through the gate-
level simulations. For the indicating asynchronous multipliers 
in Table I, their forward and reverse latencies are equal, and so 
the cycle time is easily estimated. This is because the longest 
datapath traversed for the application of data or spacer is the 
same as highlighted by the dotted blue lines in Figs. 4a and 4b.   

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 467



 

 

 

Full  
Adder

Full 
Adder

Full 
Adder

A7B0 A6B1

A4B3

2 2

2 2

2 2

2

Note: Input and output signals are dual-rail 
encoded. For example, a signal X is encoded 

as shown below.

A5B2
2

2

Full  
Adder

Full 
Adder

Full 
Adder

A1B6

2 2

2 2

2

A2B5
2

2

A3B4

2

2

Full 
Adder

2 2

2

A0B7
2

Full  
Adder

Full 
Adder

Full 
Adder

A7B1 A6B2

A4B4

2 2

2 2

2 2

2

A5B3
2

2

Full  
Adder

Full 
Adder

Full 
Adder

A1B7

2 2

2 2

2

A2B6
2

2

A3B5

2

2

Full 
Adder

2 2

2

2

Full  
Adder

Full 
Adder

Full 
Adder

A7B2 A6B3

A4B5

2 2

2 2

2 2

2

A5B4
2

2

Full  
Adder

Full 
Adder

Full 
Adder

2 2

2 2

2

A2B7
2

2

A3B6

2

2

2

Full  
Adder

Full 
Adder

Full 
Adder

A7B3 A6B4

A4B6

2 2

2 2

2 2

2

A5B5
2

2

Full  
Adder

Full 
Adder

2 2

2

2

2

A3B7

2

2

Full  
Adder

Full 
Adder

Full 
Adder

A7B4 A6B5

A4B7

2 2

2

2

2

A5B6
2

2

Full  
Adder

2

2

2

2

2

Full  
Adder

Full 
Adder

Full 
Adder

A7B5 A6B6
2 2

2

2

2

A5B7
2

2

2

2

2

Full  
Adder

Full 
Adder

A7B6 A6B7
2 2

2

2

2

2

2

Full  
Adder

A7B7
2

2

2

2

Full  
Adder

Full 
Adder

Full 
Adder

A6B0 A5B1

A3B3

2 2

2 2

2 2

2

A4B2
2

2

Full  
Adder

Full 
Adder

Full 
Adder

2 2

2 2

A1B5
2

2

A2B4

2

2

2

A0B6
2

Full  
Adder

Full 
Adder

Full 
Adder

A5B0 A4B1

A2B3

2 2

2 2

2 2

2

A3B2
2

2

Full  
Adder

Full 
Adder

2 2

2

A0B5
2

2

A1B4

2

2

Full  
Adder

Full 
Adder

Full 
Adder

A4B0 A3B1

A1B3

2 2

2 2

2 2

2

A2B2
2

2

Full  
Adder

2

2

A0B4

2

2

Full  
Adder

Full 
Adder

Full 
Adder

A3B0 A2B1

A0B3

2 2

2 2

2 2

2

A1B2
2

2

2

Full  
Adder

Full 
Adder

A2B0 A1B1
2 2

2 2

2

A0B2
2

2
Full  

Adder

A1B0 A0B1
2 2

2

2

2

Carry input set to 0 in the case of RTZ handshaking and 1 in the case of RTO handshaking

2

X
2

X1

X0

Traversal of critical data path for the application of 
data and spacer. A 2-input strong-indication AND 
function, which represents a partial product, would 

also be traversed first, which is not shown here. 
Besides, the data path would traverse an input 
register (i.e., a 2-input C-element) at the start, 

which is also not shown here.  

P1P2P3P4P5P6P7P8P9P10P11P12P13P14P15

A0B0
2

P0

Full 
Adder

Full 
Adder

Full  
Adder

Full 
Adder

Full 
Adder

Full 
Adder

Full 
Adder

Full 
Adder

Full 
Adder

Full 
Adder

Full 
Adder

Full 
Adder

A3B0 A2B0 A1B0 A0B0

P0

A0B1A1B1A2B1

A3B1

A3B2

A3B3

P1P2P3P4P5P6P7

A0B3A1B3A2B3

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2222

2 22

2

2

2

X
2

X1

X0

Note: In the figure, all the signals are 
dual-rail encoded. For example, a signal 

X is encoded as shown below.

22

A0B2A1B2A2B2
2 22

Traversal of critical data path for the application of 
data and spacer. A 2-input strong-indication AND 
function, which represents a partial product, would 

also be traversed first, which is not shown here. 
Besides, the data path would traverse an input 
register (i.e., a 2-input C-element) at the start, 

which is also not shown here.  

2 2 2

2

Carry input set to 0 for RTZ 
handshaking and 1 for RTO 

handshaking

(a)

(b)  
Fig. 4 Schematics of: (a) 4×4 array multiplier and (b) 8×8 array multiplier. The primary inputs, partial products, intermediate outputs, and 
primary outputs are all dual-rail encoded. The critical paths are highlighted by the dotted blue lines in (a) and (b). P7 to P0 represent the 

product bits of the 4×4 array multiplier, and P15 to P0 represent the product bits of the 8×8 array multiplier.   
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Since power and cycle time are desired to be less, the 
power-cycle time product (PCTP) should also be less. The 
PCTP serves as a qualitative low power/energy metric for an 
indicating asynchronous circuit design, which is analogous to 
the power-delay product of a synchronous circuit design.  

The PCTP of the indicating asynchronous multipliers were 
calculated and normalized. To perform the normalization, the 
highest value of PCTP of an array multiplier corresponding to 
a particular multiplication operation (i.e., 4×4 or 8×8) was 
considered as the reference, and this was used to divide the 
actual PCTPs of the other array multipliers corresponding to 
the same multiplication operation. This procedure was adopted 
to obtain the normalized PCTP values of the asynchronous 
array multipliers corresponding to RTZ and RTO handshaking. 
Hence, the least value of PCTP corresponding to an indicating 
asynchronous array multiplier for a specific multiplication is 
representative of the best design with respect to RTZ/RTO 
handshaking.    

TABLE I.  DESIGN PARAMETERS OF 4×4 AND 8×8 INDICATING 
ASYNCHRONOUS MULTIPLIERS, ESTIMATED USING A 32/28-NM CMOS PROCESS 

Multiply 
Operation 

Literature 
Reference 

Cycle 
Time (ns)  

Area  
(µm2) 

Power  
(µW) 

PCTP 
(Norm.) 

Corresponding to RTZ handshaking 
 
 
 
4×4 

[26] 7.26 1015.30 1245 1 
[27]1 5.42 1006.16 1228 0.736 
[28] 5.32 926.86 1207 0.710 
[27]2 5.20 975.66 1222 0.703 
[29] 5.18 823.17 1216 0.697 
[30] 3.90 853.67 1222 0.527 
[31] 4.48 835.37 1217 0.603 

Corresponding to RTO handshaking 
 
 
 
4×4 

[26] 7.08 1015.31 1240 1 
[27]1 5.16 957.36 1211 0.712 
[28] 5.24 926.86 1206 0.720 
[27]2 5.02 951.26 1211 0.692 
[29] 5.12 823.17 1212 0.707 
[30] 3.70 853.67 1217 0.513 
[31] 4.38 835.37 1213 0.605 

Corresponding to RTZ handshaking 
 
 
 
8×8 

[26] 14.52 4259.19 1532 1 
[27]1 11.08 4216.50 1491 0.743 
[28] 11.92 3846.46 1461 0.783 
[27]2 10.56 4074.18 1477 0.701 
[29] 10.32 3362.58 1461 0.678 
[30] 8.40 3504.90 1474 0.557 
[31] 8.66 3419.50 1461 0.569 

Corresponding to RTO handshaking 
 
 
 
8×8 

[26] 14.14 4259.19 1514 1 
[27]1 10.54 3988.79 1444 0.711 
[28] 11.78 3846.46 1452 0.799 
[27]2 10.22 3960.32 1443 0.689 
[29] 10.20 3362.58 1447 0.689 
[30] 8 3504.90 1459 0.545 
[31] 8.50 3419.50 1449 0.575 

1 Uses strong-indication full adder; 2 Uses weak-indication full adder 
 

It can be seen from Table I that the average power 
dissipation does not vary significantly across the array 
multipliers corresponding to a particular handshaking, and this 

is because all the indicating asynchronous array multipliers 
satisfy the monotonic cover constraint (MCC) [11]. The MCC 
basically refers to the activation of a unique signal path from a 
primary input to a primary output for the application of an 
input data. The MCC arises from the adoption of a logic 
expression format which is composed of disjoint or orthogonal 
terms [39] to describe the primary outputs. For example, in a 
disjoint sum-of-products expression, the logical conjunction of 
any two product terms would yield zero [40], [43]. Hence, 
only one term gets activated in a disjoint logic expression 
subsequent to the application of an input data. Incorporating 
the MCC ensures the proper indication of signal transitions 
throughout an asynchronous circuit over the entire circuit 
depth from the first up to the last logic level. This is because 
the signal transitions, whether they be rising or falling, should 
occur monotonically throughout an indicating asynchronous 
circuit [34], and satisfying the MCC and performing quasi-
delay-insensitive logic decomposition guarantees this.  

Two important observations can be made from Table I. 
Firstly, the weak-indication array multiplier incorporating the 
biased weak-indication full adder of [30] and the strong-
indication 2-input AND function (to realize the partial 
products) reports less cycle time and PCTP compared to its 
counterparts with respect to RTZ and RTO handshaking for 
both 4×4 and 8×8 multiplications. Amongst the counterpart 
designs, the weak-indication array multiplier featuring the 
weak-indication full adder of [31] and the strong-indication 2-
input AND functions for the partial products is better than the 
rest with respect to 4×4 and 8×8 multiplications. Secondly, the 
RTO handshaking enables consistent reductions in the design 
metrics compared to the RTZ handshaking.       

With respect to 4×4 multiplication, compared to the weak-
indication array multiplier constructed using the weak-
indication full adder of [31], the weak-indication array 
multiplier embedding the weak-indication full adder of [30] 
reports reductions in PCTP by 12.6% for RTZ handshaking 
and 15.2% for RTO handshaking. With respect to 8×8 
multiplication, the weak-indication array multiplier 
incorporating the weak-indication full adder of [30] reports 
respective reductions in PCTP by 2.1% and 5.2% for RTZ and 
RTO handshaking compared to the weak-indication array 
multiplier incorporating the weak-indication full adder of [31].  

As the size of the multiplication is increased from 4×4 to 
8×8, it is noticed that the weak-indication array multiplier 
based on [30] achieves less reductions in cycle time and PCTP 
compared to the weak-indication array multiplier based on 
[31]. This is mainly due to the increased datapath delay 
experienced in the critical path of the former compared to the 
latter. For example, considering RTZ handshaking, the critical 
path through the full adder of [30] which corresponds to the 
carry output involves an AO222 gate, and the critical path 
through the full adder of [31] which corresponds to the carry 
output involves one AO21 gate. The typical propagation delay 
of the (minimum-sized) AO21 gate being 41% less than the 
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typical propagation delay of the (minimum-sized) AO222 gate 
[32]. Hence, it may be that as the size of the multiplication is 
further increased from 8×8, the weak-indication array 
multiplier based on [31] might become competitive to the 
weak-indication array multiplier based on [30].  

V. CONCLUSIONS AND FURTHER WORK 
This article has discussed the physical implementation of 

robust indicating asynchronous array multipliers, based on the 
4-phase RTZ and RTO handshake protocols. The 
asynchronous array multipliers are robust and correspond to 
the weak-indication timing model. The consideration of the 
array multiplier is motivated by the fact that it has a very 
regular layout and hence it is easy to pipeline if any increase in 
the throughput is desired.    

It is inferred that the weak-indication array multiplier 
incorporating the weak-indication full adder of [30] enables 
enhanced optimizations in the design metrics compared to the 
other weak-indication array multipliers utilizing other full 
adders such as [26–29], [31]. As the size of the multiplication 
is further increased, we hypothesize that the array multiplier 
utilizing the weak-indication full adder of [31] might become 
competitive to that utilizing the weak-indication full adder of 
[30]. However, a practical implementation and analysis are 
necessary. Nevertheless, both [30] and [31] present the designs 
of full adders which incorporate redundant logic, and it was 
shown in [44] that redundant logic could help to significantly 
reduce the latencies and the cycle time and associated with just 
negligible increases in area and average power dissipation.  

Construction of indicating asynchronous array multipliers as 
given in Table I is quite straightforward since the full adders 
based on the corresponding design methods [26–31] can be 
placed directly in the architectures shown in Figs. 4a and 4b, 
corresponding to RTZ or RTO handshaking. However, the 
construction of robust early output asynchronous array 
multipliers using the early output full adders of [22], [45] and 
[46] may not be straightforward. This is due to the likelihood 
of the problem of gate orphans. To overcome the gate orphan 
problem in the realization of an early output asynchronous 
array multiplier, the provision of internal completion detectors, 
as discussed in [47], may become necessary to ensure full 
indication of the rising and falling signal transitions at the 
intermediate gate outputs. Moreover, the outputs of all the 
internal completion detectors have to be synchronized with at 
least one dual-rail product bit of the array multiplier using a 
tree of C-elements. This would enable the provision of proper 
acknowledgment for the receipt of data or spacer starting from 
the first logic level up to the last logic level.  

Although the early output logic better optimizes the physical 
realization of the full adders thereby suggesting potential 
savings in the design metrics of asynchronous array multipliers 
the additional introduction of internal completion detectors for 
quasi-delay-insensitivity might offset the reductions in the 
design metrics achieved based on the early output logic. This 
could be a subject matter for future investigation. Hence, the 

design and implementation of robust early output 
asynchronous array multipliers and their comparative 
evaluation with indicating asynchronous multipliers in terms of 
the design metrics is necessary, which suggests a scope for 
further work.  
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