

Abstract—Multiplication is an important arithmetic operation

that is frequently encountered in microprocessing and digital signal
processing applications, and multiplication is physically realized
using a multiplier. This paper discusses the physical implementation
of many indicating asynchronous array multipliers, which are
inherently elastic and modular and are robust to timing, process and
parametric variations. We consider the physical realization of many
indicating asynchronous array multipliers using a 32/28nm CMOS
technology. The weak-indication array multipliers comprise strong-
indication or weak-indication full adders, and strong-indication 2-
input AND functions to realize the partial products. The multipliers
were synthesized in a semi-custom ASIC design style using standard
library cells including a custom-designed 2-input C-element. 4×4 and
8×8 multiplication operations were considered for the physical
implementations. The 4-phase return-to-zero (RTZ) and the 4-phase
return-to-one (RTO) handshake protocols were utilized for data
communication, and the delay-insensitive dual-rail code was used for
data encoding. Among several weak-indication array multipliers, a
weak-indication array multiplier utilizing a biased weak-indication
full adder and the strong-indication 2-input AND function is found to
have reduced cycle time and power-cycle time product with respect
to RTZ and RTO handshaking for 4×4 and 8×8 multiplications.
Further, the 4-phase RTO handshaking is found to be preferable to
the 4-phase RTZ handshaking for achieving enhanced optimizations
of the design metrics.

Keywords—Arithmetic circuits, Asynchronous circuits, Digital
circuits, Indication, Multiplier, CMOS, Standard cells.

I. INTRODUCTION
ULTIPLICATION is an important arithmetic operation that
is frequently encountered in microprocessing and digital

signal processing [1], [2]. References [3–9] discuss various
transistor-level and gate-level designs of the asynchronous
multipliers. However, a majority of these multipliers
correspond to the bundled-data handshake protocol, which has
separate request and acknowledge wires besides the data
bundle (i.e., data bus) and features a constant delay element
that governs data communication between the sender and the
receiver. Due to the fixed delay presumed for the data transfer
between the sender and the receiver, bundled-data
asynchronous multipliers are not robust when the presumed
delay gets exceeded, and they are neither indicating nor robust.

This work is supported by the Academic Research Fund Tier-2 research

award of the Ministry of Education, Republic of Singapore under Grant
MOE2017-T2-1-002.

P. Balasubramanian and D.L. Maskell are with the School of Computer
Science and Engineering, Nanyang Technological University, Singapore
639798 (e-mails: balasubramanian@ntu.edu.sg, asdouglas@ntu.edu.sg).

In this work, we consider the robust class of indicating
asynchronous multipliers whose product bits acknowledge the
arrival of all the primary inputs and the completion of internal
computation. Indicating asynchronous circuits are quasi-delay-
insensitive circuits, which are the practically realizable delay-
insensitive circuits which include the weakest compromise of
isochronic fork(s) [10]. All the wires branching out from an
isochronic node or junction are assumed to experience signal
transitions i.e., rising or falling concurrently. In this work, we
consider the array multiplier architecture for an example,
which corresponds to the well-known shift-and-add
multiplication approach. We realize indicating asynchronous
realizations of 4×4 and 8×8 array multipliers, which utilize
asynchronous components pertaining to strong-indication and
weak-indication asynchronous logic design methods.

The rest of the article is organized into 4 sections. Section 2
gives background information about the design of indicating
asynchronous circuits. Section 3 discusses various indicating
asynchronous implementations of the 4×4 and 8×8 array
multipliers by following the semi-custom ASIC design style.
Section 4 presents the design metrics estimated for the array
multipliers based on physical realization using a 32/28nm
CMOS process. The (normalized) power-cycle time product of
the multipliers is also provided. Finally, some conclusions and
a scope for further work are mentioned in Section 5.

II. INDICATING ASYNCHRONOUS CIRCUITS – A BACKGROUND

A. Data Encoding and Handshaking
The schematic of an indicating asynchronous circuit stage is

shown in Fig. 1, which is correlated with the sender-receiver
analogy. In Fig. 1, the current stage and the next stage registers
are analogous to the sender and the receiver, and the indicating
asynchronous circuit is sandwiched between the current stage
and the next stage register banks. The register bank comprises
a series of registers, with one register allotted for each of the
rails of an encoded data input. Here, the register is basically a
2-input C-element. The C-element will output 1 or 0 if all its
inputs are 1 or 0 respectively. If the inputs to a C-element are
not identical then the C-element would retain its existing
steady-state. The circles with the marking ‘C’ denote the C-
elements in the figures.

In Fig. 1, (Q1, Q0), (R1, R0) and (S1, S0) represent the
delay-insensitive dual-rail encoded inputs of the single-rail
inputs Q, R and S respectively. According to dual-rail data
encoding [11] and 4-phase RTZ handshaking [12], an input Q
is encoded as (Q1, Q0) where Q = 1 is represented by Q1 = 1
and Q0 = 0, and Q = 0 is represented by Q0 = 1 and Q1 = 0.

Indicating Asynchronous Array Multipliers
P. Balasubramanian, D.L. Maskell

M

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 464

mailto:balasubramanian@ntu.edu.sg,%20asdouglas@ntu.edu.sg

Both these assignments are called data. The assignment Q1 =
Q0 = 0 is called the spacer, and the assignment Q1 = Q0 = 1 is
deemed to be illegal since the coding scheme should be
unordered [13] to maintain the delay-insensitivity.

Indicating circuit
Current
stage

register

Next
stage

register

Completion
detector

Ackout

Ackin

Completion
detector

Ackout

Ackin

Ackout

Ackout

Q1

Q0
Sender Receiver

Ackin

Indicating
asynchronous

circuit

R1
R0
S1
S0

Q1
Q0

R1
R0

S1
S0

C

Q1
Q0

R1
R0

S1
S0

C

AckoutAckout

Example
dual-rail
data bus

Completion detector (RTZ) Completion detector (RTO)

Datapath

Fig. 1 A indicating asynchronous circuit stage. Example RTZ and
RTO completion detectors are portrayed within the dotted green

boxes in green.

The application of input data to a indicating asynchronous
circuit obeying the 4-phase RTZ handshaking follows this
sequence [12]: data-spacer-data-spacer, and so forth. The
application of input data is followed by the application of the
spacer, which implies that there is an interim RTZ phase
between the successive applications of input data. The RTZ
phase ensures an unambiguous data communication between
the sender and the receiver. The RTZ handshaking is governed
by the following four steps.

• Step 1: The dual-rail data bus specified by (Q1, Q0),
(R1, R0) and (S1, S0) assumes the spacer, and
therefore the acknowledgment input (Ackin) is binary
1. After the sender transmits a data, this would cause
rising signal transitions i.e., binary 0 to 1 to occur on
one of the dual rails of the dual-rail data bus

• Step 2: The receiver would receive the data sent and
drive the acknowledgment output (Ackout) to 1

• Step 3: The sender waits for Ackin to become 0 and
would reset the dual-rail data bus, i.e., the dual-rail
data bus becomes the spacer again

• Step 4: After an unbounded but a finite and positive
time duration, the receiver drives Ackout to 0 and
subsequently Ackin would assume 1. With this, a

single data transaction is said to be completed, and the
asynchronous circuit is permitted to start the next data
transaction

According to dual-rail data encoding and 4-phase RTO

handshaking [14], an input Q is encoded as (Q1, Q0) and Q =
1 is represented by Q1 = 0 and Q0 = 1, and Q = 0 is
represented by Q0 = 0 and Q1 = 1. Both these assignments are
called data. The assignment Q1 = Q0 = 1 is called the spacer,
and the assignment Q1 = Q0 = 0 is deemed to be illegal to
maintain the delay-insensitivity.

The application of input data to a indicating asynchronous
circuit obeying the 4-phase RTO handshaking follows this
sequence: spacer-data-spacer-data, and so forth. There is an
interim RTO phase between the successive applications of
input data and the RTO phase ensures an unambiguous data
communication between the sender and the receiver. The RTO
handshaking process is governed by the following four steps.

• Step 1: Ackin is equal to binary 1. After the sender

transmits the spacer, this would cause rising signal
transitions i.e., binary 0 to 1 on all the rails of the dual-
rail data bus

• Step 2: The receiver would receive the spacer sent and
drive Ackout to 1

• Step 3: The sender waits for Ackin to become 0 and
would transmit the data through the dual-rail data bus

• Step 4: After an unbounded but a finite and positive
time duration, the receiver drives Ackout to 0 and
subsequently Ackin would assume 1. With this, a
single data transaction is said to be completed, and the
asynchronous circuit is permitted to start the next data
transaction

In a indicating asynchronous circuit, the time taken to

process the data in the datapath, highlighted by the dotted blue
in Fig. 1, is called forward latency and the time taken to
process the spacer is called reverse latency. Since there is an
intermediate RTZ or RTO phase between the application of
two input data sequences, the cycle time is expressed by the
sum of forward and reverse latencies. The cycle time of a
indicating asynchronous circuit is synonymous with the clock
period of a synchronous circuit.

The gate-level detail of the example completion detectors
corresponding to 4-phase RTZ and RTO handshake protocols
are shown at the bottom of Fig. 1, within the dotted green
boxes. A completion detector acknowledges the receipt of all
the primary inputs given to an indicating asynchronous circuit
stage. In the case of 4-phase RTZ handshaking, Ackout is
provided by employing a 2-input OR gate to combine the
respective dual rails of each encoded input, and then
synchronizing the outputs of such 2-input OR gates using a C-
element or a tree of C-elements. In the case of 4-phase RTO
handshaking, Ackout is provided by employing a 2-input AND
gate to combine the respective dual rails of each encoded

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 465

input, and then synchronizing the outputs of such 2-input AND
gates using a C-element or a tree of C-elements. It may be
noted that Ackin is the Boolean complement of Ackout and
vice-versa.

B. Indicating Asynchronous Circuits
Indicating asynchronous circuits are classified into strong-

indication and weak-indication circuits [15]. The input-output
timing correlation of these circuit types is illustrated by a
representative timing diagram shown in Fig. 2. The arrival of
data or spacer is highlighted within the dotted blue circles and
the complete receipt of data or spacer is highlighted within the
dotted green ovals in Fig. 2.

Inputs

All

None

All

None

OutputsStrong-indication

All

None

OutputsWeak-indication

Data
arrives

Spacer
arrives

Data arrived

Spacer
arrived

(a)

(b)

Inputs

None

All

None

All

OutputsStrong-indication

None

All

OutputsWeak-indication

Data
arrives

Spacer
arrives

Data arrived Spacer
arrived

Fig. 2 Input-output timing correlation of strong-indication and weak-
indication circuit types corresponding to: (a) RTZ handshaking and

(b) RTO handshaking.
Strong-indication circuits [16] would wait to receive all the

primary inputs (i.e., data or spacer) and would then process
them to produce the required primary outputs (data or spacer).

On the other hand, weak-indication circuits [17] can produce
all but one of the primary outputs after receiving a subset of
the primary inputs. Nevertheless, only after receiving the last
primary input, they would produce the last primary output.

Both strong- and weak-indication asynchronous circuit types
incorporate the isochronic fork assumption [10]. It is reported
in [18] that the isochronic fork assumption is also realizable in
the nanoelectronics regime.

A cascade of strong-indication sub-circuits may not result in
a strong-indication circuit. Rather, a weak-indication circuit
may result. For example, if two strong-indication full adders
are cascaded, the resultant would be a weak-indication 2-bit
ripple carry adder (RCA). This is because if all the inputs to
one of the full adders are provided, the corresponding sum and
carry output bits of that full adder could be produced
regardless of the provision of inputs for the other full adder in
the RCA. However, only after the inputs to the other full adder
are supplied, its corresponding sum and carry output bits
would be produced. This is characteristic of weak-indication.

Among the strong- and weak-indication circuits, the latter
are preferable for physical implementation [19]. This is
because of the strict timing restrictions inherent in the former.
Generally, for implementing arithmetic functions, the weak-
indication type is preferable to the strong-indication type [20–
22] and this is because strong-indication arithmetic circuits
tend to experience worst-case forward and reverse latencies for
the application of data and spacer, and therefore the cycle time
of strong-indication arithmetic circuits is always the maximum.

On the other hand, weak-indication arithmetic circuits may
encounter data-dependent forward and reverse latencies or a
data-dependent forward latency and a constant reverse latency.
Thus, the cycle time of weak-indication arithmetic circuits is
usually less compared to that of strong-indication arithmetic
circuits. However, for the weak-indication array multipliers
considered here it is observed that their forward and reverse
latencies are neither data-dependent nor a constant; rather they
correspond to the worst-case timing and so the cycle time also
corresponds to the worst-case. Nevertheless, it is noted that the
weak-indication array multipliers incorporating weak-
indication full adders facilitate reductions in cycle time, silicon
area, and average (total) power dissipation compared to the
weak-indication array multipliers incorporating strong-
indication full adders. This will be evident from the simulation
results presented in Section 4.

III. INDICATING ASYNCHRONOUS ARRAY MULTIPLIERS
Many weakly indicating 4×4 and 8×8 array multipliers were

physically implemented corresponding to RTZ and RTO
handshaking. References [23], [24], [41] provide practical
examples for the transformation of an asynchronous circuit
corresponding to the RTZ protocol into that that corresponds
to the RTO protocol and vice-versa. The rules for the logical
transformation between RTZ and RTO handshaking are given
in [25] along with the proofs, and an interested reader may
refer to the same for details. However, the example RTZ and

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 466

RTO completion detectors shown in Fig. 1 serve as a small
illustration for the logic transformation between RTZ and RTO
handshaking. Another example of such a logic transformation
is portrayed by Fig. 3, which shows the 2-input AND function
realized according to RTZ and RTO handshaking.

C4

C3

C2

C1

OR

A1
B1

A0
B0

Z1

Z0

(a)

C4

C3

C2

C1
A1
B1

A0
B0

Z1

Z0

(b)

AND

Fig. 3 Strongly indicating realization of 2-input AND function

corresponding to: (a) RTZ handshaking and (b) RTO handshaking.
C1 to C4 represent the 2-input C-elements in (a) and (b). (A1, A0)

and (B1, B0) are the inputs and (Z1, Z0) is the output.

Note that robust asynchronous realizations of the 2-input

AND function are required to generate the partial products.
For this purpose, a strongly indicating realization of the 2-
input AND function is considered as shown in Fig. 3. It may
be noted in this context that a weak-indication 2-input AND
function cannot be realized since it has only one dual-rail
primary output. A weak-indication circuit requires at least a
pair of dual-rail primary outputs to satisfy the weak-indication
timing constraints.

The primary intent here is to determine which indicating
asynchronous logic components would be more optimum for
realizing the array multiplier architecture. This observation
may be useful to determine which indicating asynchronous
logic components would be more suitable for the optimum
realization of indicating asynchronous multipliers based on the
other multiplier architectures. Further, it is of interest to
ascertain whether the RTZ or the RTO handshaking could help
to better optimize the design metrics.

The indicating full adders derived based on different
asynchronous logic design methods [26–31] are used to realize
the asynchronous array multipliers, as mentioned below, by
substituting the full adders in the array multiplier architectures
shown in Figs. 4a and 4b. Strongly indicating realizations of
the 2-input AND function, as shown in Fig. 3, were used to
generate the partial products to perform shifted-addition.

• Weak-indication array multipliers which incorporate
strong-indication full adders realized based on [26]
corresponding to RTZ and RTO handshaking

• Weak-indication array multipliers which incorporate
strong-indication full adders realized based on [27]
corresponding to RTZ and RTO handshaking

• Weak-indication array multipliers which incorporate
strong-indication full adders realized based on [28]
corresponding to RTZ and RTO handshaking

• Weak-indication array multipliers which incorporate
weak-indication full adders realized based on [27]
corresponding to RTZ and RTO handshaking

• Weak-indication array multipliers which incorporate
weak-indication full adders realized based on [29]
corresponding to RTZ and RTO handshaking

• Weak-indication array multipliers which incorporate
weak-indication full adders realized based on [30]
corresponding to RTZ and RTO handshaking

• Weak-indication array multipliers which incorporate
weak-indication full adders realized based on [31]
corresponding to RTZ and RTO handshaking

IV. SIMULATION RESULTS
Twenty-eight indicating asynchronous array multipliers

corresponding to 4×4 and 8×8 multiplications were physically
realized using the gates of a 32/28nm CMOS standard digital
cell library [32]. In our previous work [42], only the 4×4
multiplication was considered. The 2-input C-element does not
form a part of the cell library and so it was custom-realized
based on the AO222 cell by introducing feedback, which
required 12 transistors. All the asynchronous array multipliers
correspond to weak-indication. An N×N array multiplier gives
rise to N2 partial products, which are realized using 2-input
AND functions, and then shifted and added using N(N–1) full
adders with the carry input of N full adders reset (i.e., set to 0
and 1 in the case of RTZ and RTO handshaking respectively).

Quasi-delay-insensitivity was carefully considered while
decomposing the asynchronous logic [28] [33] to avoid the
possibility of creation of gate orphan(s). Gate orphans are
unacknowledged signal transitions on the intermediate gate
outputs, which are problematic as they might affect the
robustness of an indicating asynchronous circuit and so they
should be avoided [34]. For an explanation of gate orphans,
we refer the readers to some prior works [35–37]. Wire orphan
refers to the unacknowledged signal transition on a wire and is
avoided by imposing the isochronic fork assumption [38].

A typical case PVT specification of the high Vt digital cell
library [32] with a supply voltage of 1.05V and an operating
junction temperature of 25°C was considered to perform the
simulations. The design metrics such as cycle time, area, and
average power dissipation estimated are given in Table I.

The cycle time of an indicating asynchronous circuit is the
sum of forward and reverse latencies. The forward latency is
like the critical path delay which can be directly estimated.
The estimation of reverse latency is non-trivial since it
represents the time taken to process the spacer and the reverse
latency cannot be directly estimated using a commercial static
timing analyzer. The reverse latency can however be estimated
based on the timing information obtained through the gate-
level simulations. For the indicating asynchronous multipliers
in Table I, their forward and reverse latencies are equal, and so
the cycle time is easily estimated. This is because the longest
datapath traversed for the application of data or spacer is the
same as highlighted by the dotted blue lines in Figs. 4a and 4b.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 467

Full
Adder

Full
Adder

Full
Adder

A7B0 A6B1

A4B3

2 2

2 2

2 2

2

Note: Input and output signals are dual-rail
encoded. For example, a signal X is encoded

as shown below.

A5B2
2

2

Full
Adder

Full
Adder

Full
Adder

A1B6

2 2

2 2

2

A2B5
2

2

A3B4

2

2

Full
Adder

2 2

2

A0B7
2

Full
Adder

Full
Adder

Full
Adder

A7B1 A6B2

A4B4

2 2

2 2

2 2

2

A5B3
2

2

Full
Adder

Full
Adder

Full
Adder

A1B7

2 2

2 2

2

A2B6
2

2

A3B5

2

2

Full
Adder

2 2

2

2

Full
Adder

Full
Adder

Full
Adder

A7B2 A6B3

A4B5

2 2

2 2

2 2

2

A5B4
2

2

Full
Adder

Full
Adder

Full
Adder

2 2

2 2

2

A2B7
2

2

A3B6

2

2

2

Full
Adder

Full
Adder

Full
Adder

A7B3 A6B4

A4B6

2 2

2 2

2 2

2

A5B5
2

2

Full
Adder

Full
Adder

2 2

2

2

2

A3B7

2

2

Full
Adder

Full
Adder

Full
Adder

A7B4 A6B5

A4B7

2 2

2

2

2

A5B6
2

2

Full
Adder

2

2

2

2

2

Full
Adder

Full
Adder

Full
Adder

A7B5 A6B6
2 2

2

2

2

A5B7
2

2

2

2

2

Full
Adder

Full
Adder

A7B6 A6B7
2 2

2

2

2

2

2

Full
Adder

A7B7
2

2

2

2

Full
Adder

Full
Adder

Full
Adder

A6B0 A5B1

A3B3

2 2

2 2

2 2

2

A4B2
2

2

Full
Adder

Full
Adder

Full
Adder

2 2

2 2

A1B5
2

2

A2B4

2

2

2

A0B6
2

Full
Adder

Full
Adder

Full
Adder

A5B0 A4B1

A2B3

2 2

2 2

2 2

2

A3B2
2

2

Full
Adder

Full
Adder

2 2

2

A0B5
2

2

A1B4

2

2

Full
Adder

Full
Adder

Full
Adder

A4B0 A3B1

A1B3

2 2

2 2

2 2

2

A2B2
2

2

Full
Adder

2

2

A0B4

2

2

Full
Adder

Full
Adder

Full
Adder

A3B0 A2B1

A0B3

2 2

2 2

2 2

2

A1B2
2

2

2

Full
Adder

Full
Adder

A2B0 A1B1
2 2

2 2

2

A0B2
2

2
Full

Adder

A1B0 A0B1
2 2

2

2

2

Carry input set to 0 in the case of RTZ handshaking and 1 in the case of RTO handshaking

2

X
2

X1

X0

Traversal of critical data path for the application of
data and spacer. A 2-input strong-indication AND
function, which represents a partial product, would

also be traversed first, which is not shown here.
Besides, the data path would traverse an input
register (i.e., a 2-input C-element) at the start,

which is also not shown here.

P1P2P3P4P5P6P7P8P9P10P11P12P13P14P15

A0B0
2

P0

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

Full
Adder

A3B0 A2B0 A1B0 A0B0

P0

A0B1A1B1A2B1

A3B1

A3B2

A3B3

P1P2P3P4P5P6P7

A0B3A1B3A2B3

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2222

2 22

2

2

2

X
2

X1

X0

Note: In the figure, all the signals are
dual-rail encoded. For example, a signal

X is encoded as shown below.

22

A0B2A1B2A2B2
2 22

Traversal of critical data path for the application of
data and spacer. A 2-input strong-indication AND
function, which represents a partial product, would

also be traversed first, which is not shown here.
Besides, the data path would traverse an input
register (i.e., a 2-input C-element) at the start,

which is also not shown here.

2 2 2

2

Carry input set to 0 for RTZ
handshaking and 1 for RTO

handshaking

(a)

(b)
Fig. 4 Schematics of: (a) 4×4 array multiplier and (b) 8×8 array multiplier. The primary inputs, partial products, intermediate outputs, and
primary outputs are all dual-rail encoded. The critical paths are highlighted by the dotted blue lines in (a) and (b). P7 to P0 represent the

product bits of the 4×4 array multiplier, and P15 to P0 represent the product bits of the 8×8 array multiplier.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 468

Since power and cycle time are desired to be less, the
power-cycle time product (PCTP) should also be less. The
PCTP serves as a qualitative low power/energy metric for an
indicating asynchronous circuit design, which is analogous to
the power-delay product of a synchronous circuit design.

The PCTP of the indicating asynchronous multipliers were
calculated and normalized. To perform the normalization, the
highest value of PCTP of an array multiplier corresponding to
a particular multiplication operation (i.e., 4×4 or 8×8) was
considered as the reference, and this was used to divide the
actual PCTPs of the other array multipliers corresponding to
the same multiplication operation. This procedure was adopted
to obtain the normalized PCTP values of the asynchronous
array multipliers corresponding to RTZ and RTO handshaking.
Hence, the least value of PCTP corresponding to an indicating
asynchronous array multiplier for a specific multiplication is
representative of the best design with respect to RTZ/RTO
handshaking.

TABLE I. DESIGN PARAMETERS OF 4×4 AND 8×8 INDICATING
ASYNCHRONOUS MULTIPLIERS, ESTIMATED USING A 32/28-NM CMOS PROCESS

Multiply
Operation

Literature
Reference

Cycle
Time (ns)

Area
(µm2)

Power
(µW)

PCTP
(Norm.)

Corresponding to RTZ handshaking

4×4

[26] 7.26 1015.30 1245 1
[27]1 5.42 1006.16 1228 0.736
[28] 5.32 926.86 1207 0.710
[27]2 5.20 975.66 1222 0.703
[29] 5.18 823.17 1216 0.697
[30] 3.90 853.67 1222 0.527
[31] 4.48 835.37 1217 0.603

Corresponding to RTO handshaking

4×4

[26] 7.08 1015.31 1240 1
[27]1 5.16 957.36 1211 0.712
[28] 5.24 926.86 1206 0.720
[27]2 5.02 951.26 1211 0.692
[29] 5.12 823.17 1212 0.707
[30] 3.70 853.67 1217 0.513
[31] 4.38 835.37 1213 0.605

Corresponding to RTZ handshaking

8×8

[26] 14.52 4259.19 1532 1
[27]1 11.08 4216.50 1491 0.743
[28] 11.92 3846.46 1461 0.783
[27]2 10.56 4074.18 1477 0.701
[29] 10.32 3362.58 1461 0.678
[30] 8.40 3504.90 1474 0.557
[31] 8.66 3419.50 1461 0.569

Corresponding to RTO handshaking

8×8

[26] 14.14 4259.19 1514 1
[27]1 10.54 3988.79 1444 0.711
[28] 11.78 3846.46 1452 0.799
[27]2 10.22 3960.32 1443 0.689
[29] 10.20 3362.58 1447 0.689
[30] 8 3504.90 1459 0.545
[31] 8.50 3419.50 1449 0.575

1 Uses strong-indication full adder; 2 Uses weak-indication full adder

It can be seen from Table I that the average power
dissipation does not vary significantly across the array
multipliers corresponding to a particular handshaking, and this

is because all the indicating asynchronous array multipliers
satisfy the monotonic cover constraint (MCC) [11]. The MCC
basically refers to the activation of a unique signal path from a
primary input to a primary output for the application of an
input data. The MCC arises from the adoption of a logic
expression format which is composed of disjoint or orthogonal
terms [39] to describe the primary outputs. For example, in a
disjoint sum-of-products expression, the logical conjunction of
any two product terms would yield zero [40], [43]. Hence,
only one term gets activated in a disjoint logic expression
subsequent to the application of an input data. Incorporating
the MCC ensures the proper indication of signal transitions
throughout an asynchronous circuit over the entire circuit
depth from the first up to the last logic level. This is because
the signal transitions, whether they be rising or falling, should
occur monotonically throughout an indicating asynchronous
circuit [34], and satisfying the MCC and performing quasi-
delay-insensitive logic decomposition guarantees this.

Two important observations can be made from Table I.
Firstly, the weak-indication array multiplier incorporating the
biased weak-indication full adder of [30] and the strong-
indication 2-input AND function (to realize the partial
products) reports less cycle time and PCTP compared to its
counterparts with respect to RTZ and RTO handshaking for
both 4×4 and 8×8 multiplications. Amongst the counterpart
designs, the weak-indication array multiplier featuring the
weak-indication full adder of [31] and the strong-indication 2-
input AND functions for the partial products is better than the
rest with respect to 4×4 and 8×8 multiplications. Secondly, the
RTO handshaking enables consistent reductions in the design
metrics compared to the RTZ handshaking.

With respect to 4×4 multiplication, compared to the weak-
indication array multiplier constructed using the weak-
indication full adder of [31], the weak-indication array
multiplier embedding the weak-indication full adder of [30]
reports reductions in PCTP by 12.6% for RTZ handshaking
and 15.2% for RTO handshaking. With respect to 8×8
multiplication, the weak-indication array multiplier
incorporating the weak-indication full adder of [30] reports
respective reductions in PCTP by 2.1% and 5.2% for RTZ and
RTO handshaking compared to the weak-indication array
multiplier incorporating the weak-indication full adder of [31].

As the size of the multiplication is increased from 4×4 to
8×8, it is noticed that the weak-indication array multiplier
based on [30] achieves less reductions in cycle time and PCTP
compared to the weak-indication array multiplier based on
[31]. This is mainly due to the increased datapath delay
experienced in the critical path of the former compared to the
latter. For example, considering RTZ handshaking, the critical
path through the full adder of [30] which corresponds to the
carry output involves an AO222 gate, and the critical path
through the full adder of [31] which corresponds to the carry
output involves one AO21 gate. The typical propagation delay
of the (minimum-sized) AO21 gate being 41% less than the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 469

typical propagation delay of the (minimum-sized) AO222 gate
[32]. Hence, it may be that as the size of the multiplication is
further increased from 8×8, the weak-indication array
multiplier based on [31] might become competitive to the
weak-indication array multiplier based on [30].

V. CONCLUSIONS AND FURTHER WORK
This article has discussed the physical implementation of

robust indicating asynchronous array multipliers, based on the
4-phase RTZ and RTO handshake protocols. The
asynchronous array multipliers are robust and correspond to
the weak-indication timing model. The consideration of the
array multiplier is motivated by the fact that it has a very
regular layout and hence it is easy to pipeline if any increase in
the throughput is desired.

It is inferred that the weak-indication array multiplier
incorporating the weak-indication full adder of [30] enables
enhanced optimizations in the design metrics compared to the
other weak-indication array multipliers utilizing other full
adders such as [26–29], [31]. As the size of the multiplication
is further increased, we hypothesize that the array multiplier
utilizing the weak-indication full adder of [31] might become
competitive to that utilizing the weak-indication full adder of
[30]. However, a practical implementation and analysis are
necessary. Nevertheless, both [30] and [31] present the designs
of full adders which incorporate redundant logic, and it was
shown in [44] that redundant logic could help to significantly
reduce the latencies and the cycle time and associated with just
negligible increases in area and average power dissipation.

Construction of indicating asynchronous array multipliers as
given in Table I is quite straightforward since the full adders
based on the corresponding design methods [26–31] can be
placed directly in the architectures shown in Figs. 4a and 4b,
corresponding to RTZ or RTO handshaking. However, the
construction of robust early output asynchronous array
multipliers using the early output full adders of [22], [45] and
[46] may not be straightforward. This is due to the likelihood
of the problem of gate orphans. To overcome the gate orphan
problem in the realization of an early output asynchronous
array multiplier, the provision of internal completion detectors,
as discussed in [47], may become necessary to ensure full
indication of the rising and falling signal transitions at the
intermediate gate outputs. Moreover, the outputs of all the
internal completion detectors have to be synchronized with at
least one dual-rail product bit of the array multiplier using a
tree of C-elements. This would enable the provision of proper
acknowledgment for the receipt of data or spacer starting from
the first logic level up to the last logic level.

Although the early output logic better optimizes the physical
realization of the full adders thereby suggesting potential
savings in the design metrics of asynchronous array multipliers
the additional introduction of internal completion detectors for
quasi-delay-insensitivity might offset the reductions in the
design metrics achieved based on the early output logic. This
could be a subject matter for future investigation. Hence, the

design and implementation of robust early output
asynchronous array multipliers and their comparative
evaluation with indicating asynchronous multipliers in terms of
the design metrics is necessary, which suggests a scope for
further work.

REFERENCES
[1] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative

Approach, 5th edition, Morgan Kaufmann Publishers, USA, 2011.
[2] L. Wanhammar, DSP Integrated Circuits, Academic Press, USA, 1999.
[3] D. Kearney, N.W. Bergmann, “Bundled data asynchronous multipliers

with data dependent computation times,” Proc. Third International
Symposium on Advanced Research in Asynchronous Circuits and
Systems, pp. 186-197, 1997.

[4] B.-H. Gwee, J.S. Chang, Y. Shi, C.-C. Chua, K.-S. Chong, “A low-
voltage micropower asynchronous multiplier with shift-add
multiplication approach,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 56, no. 7, pp. 1349-1359, 2009.

[5] J. Crop, S. Fairbanks, R. Pawlowski, P. Chiang, “150mV sub-threshold
asynchronous multiplier for low-power sensor applications,” Proc.
International Symposium on VLSI Design, Automation and Test, pp.
254-257, 2010.

[6] B.R. Sheikh, R. Manohar, “An asynchronous floating-point multiplier,”
Proc. 18th IEEE International Symposium on Asynchronous Circuits
and Systems, pp. 89-96, 2012.

[7] S. Bo, W. Zhiying, H. Libo, S. Wei, W. Yourui, “Reducing power
consumption of floating-point multiplier via asynchronous technique,”
Proc. 4th International Conference on Computational and Information
Sciences, pp. 1360-1363, 2012.

[8] Z. Xia, M. Hariyama, M. Kameyama, “Asynchronous domino logic
pipeline design based on constructed critical data path,” IEEE
Transactions on VLSI Systems, vol. 23, no. 4, pp. 619-630, 2015.

[9] M.M. Kim, J. Kim, P. Beckett, “Area performance tradeoffs in NCL
multipliers using two-dimensional pipelining,” Proc. International SoC
Design Conference, pp. 125-126, 2015.

[10] A.J. Martin, “The limitation to delay-insensitivity in asynchronous
circuits,” Proc. 6th MIT Conference on Advanced Research in VLSI, pp.
263-278, 1990.

[11] T. Verhoeff, “Delay-insensitive codes – an overview,” Distributed
Computing, vol. 3, pp. 1-8, 1988.

[12] J. Sparsø, S. Furber (Eds.), Principles of Asynchronous Circuit Design:
A Systems Perspective, Kluwer Academic Publishers, 2001.

[13] B. Bose, “On unordered codes,” IEEE Transactions on Computers, vol.
40, pp. 125-131, 1991.

[14] M.T. Moreira, R.A. Guazzelli, N.L.V. Calazans, “Return-to-one
protocol for reducing static power in C-elements of QDI circuits
employing m-of-n codes,” Proc. 25th Symposium on Integrated Circuits
and Systems Design, pp. 1-6, 2012.

[15] C.L. Seitz, “System Timing”, in Introduction to VLSI Systems, C. Mead
and L. Conway (Eds.), pp. 218-262, Addison-Wesley, Massachusetts,
USA, 1980.

[16] P. Balasubramanian, D.A. Edwards, “Efficient realization of strongly
indicating function blocks,” Proc. IEEE Computer Society Annual
Symposium on VLSI, pp. 429-432, 2008.

[17] P. Balasubramanian, D.A. Edwards, “A new design technique for
weakly indicating function blocks,” Proc. 11th IEEE Workshop on
Design and Diagnostics of Electronic Circuits and Systems, pp. 116-
121, 2008.

[18] A.J. Martin, P. Prakash, “Asynchronous nano-electronics: preliminary
investigation,” Proc. 14th IEEE International Symposium on
Asynchronous Circuits and Systems, pp. 58-68, 2008.

[19] P. Balasubramanian, N.E. Mastorakis, “Global versus local weak-
indication self-timed function blocks – a comparative analysis,” Proc.
10th International Conference on Circuits, Systems, Signal and
Telecommunications, pp. 86-97, 2016.

[20] P. Balasubramanian, “Self-timed logic and the design of self-timed
adders,” PhD thesis, School of Computer Science, The University of
Manchester, UK, 2010.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 470

[21] P. Balasubramanian, N.E. Mastorakis, “Timing analysis of quasi-delay-
insensitive ripple carry adders – a mathematical study,” Proc. 3rd
European Conference of Circuits Technology and Devices, pp. 233-
240, 2012.

[22] P. Balasubramanian, S. Yamashita, “Area/latency optimized early
output asynchronous full adders and relative-timed ripple carry adders,”
SpringerPlus, vol. 5, no. 1, pages 26, 2016.

[23] P. Balasubramanian, “Approximate early output asynchronous adders
based on dual-rail data encoding and 4-phase return-to-zero and return-
to-one handshaking,” International Journal of Circuits, Systems and
Signal Processing, Invited Paper, vol. 11, pp. 445-453, 2017.

[24] P. Balasubramanian, C. Dang, “A comparison of quasi-delay-insensitive
asynchronous adder designs corresponding to return-to-zero and return-
to-one handshaking,” Proc. 60th IEEE International Midwest
Symposium on Circuits and Systems, pp. 1192-1195, 2017.

[25] P. Balasubramanian, “Comparative evaluation of quasi-delay-insensitive
asynchronous adders corresponding to return-to-zero and return-to-one
handshaking,” Facta Universitatis, Series: Electronics and Energetics,
Invited Paper, vol. 31, no. 1, pp. 25-39, March 2018.

[26] N.P. Singh, “A design methodology for self-timed systems,” M.Sc.
dissertation, Massachusetts Institute of Technology, USA, 1981.

[27] J. Sparsø, J. Staunstrup, “Delay-insensitive multi-ring structures,”
Integration, the VLSI Journal, vol. 15, no. 3, pp. 313-340, 1993.

[28] W.B. Toms, “Synthesis of quasi-delay-insensitive datapath circuits,”
PhD thesis, School of Computer Science, University of Manchester,UK,
2006.

[29] B. Folco, V. Bregier, L. Fesquet, M. Renaudin, “Technology mapping
for area optimized quasi delay insensitive circuits,” Proc. IFIP 13th
International Conference on VLSI-SoC, pp. 146-151, 2005.

[30] P. Balasubramanian, D.A. Edwards, “A delay efficient robust self-timed
full adder,” Proc. IEEE 3rd International Design and Test Workshop,
pp. 129-134, 2008.

[31] P. Balasubramanian, “A latency optimized biased implementation style
weak-indication self-timed full adder,” Facta Universitatis, Series:
Electronics and Energetics, vol. 28, pp. 657-671, 2015.

[32] Synopsys SAED_EDK32/28_CORE Databook, Revision 1.0.0, 2012.
[33] P. Balasubramanian, N.E. Mastorakis, “QDI decomposed DIMS method

featuring homogeneous/heterogeneous data encoding,” Proc.
International Conference on Computers, Digital Communications and
Computing, pp. 93-101, 2011.

[34] V.I. Varshavsky (Ed.), Self-Timed Control of Concurrent Processes:
The Design of Aperiodic Logical Circuits in Computers and Discrete
Systems, Chapter 4: Aperiodic Circuits, pp. 77-85, (Translated from the
Russian by A.V. Yakovlev), Kluwer Academic Publishers, 1990.

[35] P. Balasubramanian, K. Prasad, N.E. Mastorakis, “Robust asynchronous
implementation of Boolean functions on the basis of duality,” Proc. 14th
WSEAS International Conference on Circuits, pp. 37-43, 2010.

[36] P. Balasubramanian, Comments on “Dual-rail asynchronous logic multi-
level implementation,” Integration, the VLSI Journal, vol. 52, no. 1, pp.
34-40, 2016.

[37] P. Balasubramanian, Critique of “Asynchronous logic implementation
based on factorized DIMS,”, arXiv: 1711.02333, 2017.

[38] C. Jeong, S.M. Nowick, “Block level relaxation for timing-robust
asynchronous circuits based on eager evaluation,” Proc. 14th IEEE
International Symposium on Asynchronous Circuits and Systems, pp.
95-104, 2008.

[39] P. Balasubramanian, D.A. Edwards, “Self-timed realization of
combinational logic,” Proc. 19th International Workshop on Logic and
Synthesis, pp. 55-62, 2010.

[40] P. Balasubramanian, R. Arisaka, H.R. Arabnia, “RB_DSOP: A rule
based disjoint sum of products synthesis method,” Proc. 12th
International Conference on Computer Design, pp. 39-43, 2012.

[41] P. Balasubramanian, K. Prasad, “Latency optimized asynchronous early
output ripple carry adder based on delay-insensitive dual-rail data
encoding,” International Journal of Circuits, Systems and Signal
Processing, vol. 11, pp. 65-74, 2017.

[42] P. Balasubramanian, D.L. Maskell, N.E. Mastorakis, “Indicating
asynchronous multipliers,” Proc. 2nd European Conference on
Electrical Engineering and Computer Science, pp. 1-7, 2018.

[43] P. Balasubramanian, N.E. Mastorakis, “A set theory based method to
derive network reliability expressions of complex system topologies,”
Proc. Applied Computing Conference, pp. 108-114, 2010.

[44] P. Balasubramanian, D.A. Edwards, W.B. Toms, “Redundant logic
insertion and latency reduction in self-timed adders,” VLSI Design, vol.
2012, Article #575389, pages 13, 2012.

[45] P. Balasubramanian, “A robust asynchronous early output full adder,”
WSEAS Transactions on Circuits and Systems, vol. 10, no. 7, pp. 221-
230, 2011.

[46] P. Balasubramanian, “An asynchronous early output full adder and a
relative-timed ripple carry adder,” WSEAS Transactions on Circuits and
Systems, vol. 15, Article #12, pp. 91-101, 2016.

[47] A. Kondratyev, K. Lwin, “Design of asynchronous circuits by
synchronous CAD tools,” Proc. Design Automation Conference, pp.
411-414, 2002.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 471

